Assignment 6

Hand in no. 4 and 5 by October 31, 2024.

- 1. Let $f: E \to Y$ be a uniformly continuous map where $E \subset X$ and X, Y are metric spaces. Suppose that Y is complete. Show that there exists a uniformly continuous map F from \overline{E} to Y satisfying F = f in E. In other words, f can be extended to the closure of E preserving uniform continuity.
- 2. Let $A = \{a_{ij}\}$ be an $n \times n$ matrix. Show that

$$||Ax|| \le \sqrt{\sum_{i,j} a_{ij}^2} ||x||.$$

3. Can you solve the system of equations

$$x + y^4 = 0, \quad y - x^2 = 0.015$$
?

4. Can you solve the system of equations

$$x + y - x^{2} = 0$$
, $x - y + xy \sin y = -0.002$?

Hint: Put the system in the form $x + \cdots = 0$, $y + \cdots = 0$, first.

- 5. Let $A = (a_{ij})$ be an $n \times n$ matrix. Show that the matrix I + A is invertible if $\sum_{i,j} a_{ij}^2 < 1$. Give an example showing that I + A could become singular when $\sum_{i,j} a_{ij}^2 = 1$.
- 6. Consider the iteration

$$x_{n+1} = \alpha x_n (1 - x_n), \ x_0 \in [0, 1]$$
.

Find

- (a) The range of α so that $\{x_n\}$ remains in [0, 1].
- (b) The range of α so that the iteration has a unique fixed point 0 in [0, 1].
- (c) Show that for $\alpha \in [0, 1]$ the fixed point 0 is attracting in the sense: $x_n \to 0$ whenever $x_0 \in [0, 1]$.